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Motivation: At present, a number of correlation analysis methods between SNPs

and ROIs have been devised to explore the pathogenic mechanism of Alzheimer’s

disease. However, some of the deficiencies inherent in these methods, including lack

of statistical efficacy and biological meaning. This study aims at addressing issues:

insufficient correlation by previous methods (relative high regression error) and the lack

of biological meaning in association analysis.

Results: In this paper, a novel three-stage SNPs and ROIs correlation analysis

framework is proposed. Firstly, clustering algorithm is applied to remove the potential

linkage unbalanced structure of two SNPs. Then, the group sparse model is used to

introduce prior information such as gene structure and linkage unbalanced structure to

select feature SNPs. After the above steps, each SNP has a weight vector corresponding

to each ROI, and the importance of SNPs can be judged according to the weights in the

feature vector, and then the feature SNPs can be selected. Finally, for the selected feature

SNPS, a support vector machine regression model is used to implement the prediction

of the ROIs phenotype values. The experimental results under multiple performance

measures show that the proposed method has better accuracy than other methods.

Keywords: imaging genetics, data mining, single nucleotide polymorphism, association analysis, Alzheimer’s

disease

INTRODUCTION

Alzheimer’s disease (AD) is characterized by complex pathogenesis, slow progression of disease,
irreversible pathologic nature, and no obvious organic lesions in the early stage. Mild cognitive
impairment (MCI) is considered an early stage of AD. Without scientific intervention and
treatment, early patients with AD or MCI will continue to deteriorate, seriously affecting their
quality of life. Therefore, timely detection of early AD and early scientific intervention are of great
significance for the prevention and treatment of AD. Single nucleotide polymorphism (SNPs)
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is a polymorphism at the DNA level, which is the key source
of the occurrence and development of AD. Magnetic Resonance
Imaging (MRI) technology has been proved to be an effective
method for the detection of a variety of mental diseases such
as AD. The candidate brain regions that may be related to AD
are called region of interest (ROIs) by researchers, and according
to the morphological characteristics such as density and volume
of ROIs, the brain structure or function of individuals is judged
to be abnormal (Alfaro-Almagro et al., 2018). At present, some
methods of correlation analysis between SNPs and brain ROIs
have been widely used to explore the pathogenesis and risk
assessment of Alzheimer’s disease. For example, association
analysis was carried out between the candidate gene APOE
and target phenotypes such as medial temporal lobe atrophy,
hippocampal volume, and hippocampal shape change trajectory
(Andrawis et al., 2012; Jack et al., 2012), and the results showed
a significant negative correlation (Tosun et al., 2010). Yan et al.
introduced the sparse canonical correlation analysis model into
the algorithm of priori information induction, and then applied
the algorithm to carry out a correlation analysis between APOE
gene and several candidate target phenotypes (Yan et al., 2014).
Hao et al. proposed a tree-structured sparse learning model
for the correlation analysis of candidate genetic variation and
MRI brain imaging regions (Hao et al., 2018). This strategy
partially ignores the interrelationships between brain regions and
may miss other important genetic variations that have not yet
been reported.

In recent years, genome wide association study (GWAS)
has been applied to the study of different complex diseases
globally (Hu et al., 2018; Zhou et al., 2018), and the relevant
susceptible SNPs have been accurately identified and included
in the GWAS Catalog (Welter et al., 2014). With the generation
of high-throughput whole-genome sequencing data, the role
of data-driven genome-wide association research method on
the pathogenesis of AD becomes more and more obvious. For
example, GWAS was used to identify the susceptibility genes
significantly related to AD (Ewers et al., 2006), such as AIV,
APP, A2M and APOEε 4, which are involved in the regulation
of important biological processes such as Aβ degradation, lipid
metabolism and APP metabolism, respectively. However, with
further research, it was found that the experimental results
obtained by traditional GWAS were difficult to repeat, with low
explanatory power and lack of heritability. For example, some
common or rare variants associated with AD have been identified
(Saykin et al., 2015; Marei et al., 2016), in which the APOEε

4 allele has been shown to be significantly associated with AD
in most studies, but only 50% of AD patients carry the APOEε

4 allele. The study (Karch et al., 2014) indicates that there are
other genetic factors involved in the occurrence and development
of AD. According to recent studies (Ridge et al., 2013), about
33% of the variation of the AD phenotype can be explained by
common variation sites, among which APOE accounts for 6%,
while other known variation sites account for 2%, which means
that about 25% of the variation of the AD phenotype is still not
explained by common variation sites. Currently, there are also
genome-wide association studies with candidate phenotypes. For
example, Li et al. carried out genome-wide association studies

on quantitative features of AV-45 and found 8 pairs of epistatic
effects (Li et al., 2015). Saykin et al. conducted a genome-wide
association study with hippocampal volume and hippocampal
gray matter density as the target phenotype, identifying genes
such as CDH8, MAD2L2, QPCT, and GRB2 that had not been
reported in previous studies (Saykin et al., 2015). Due to the
large number of SNPs in the whole genome, epistasis between
SNPs is often ignored in some studies, resulting in insufficient
correlation efficiency. Stein et al. investigated the association
between about 448,000 SNPs in the genome-wide range and
31,000 brain voxels in 740 ADNI volunteers (Stein et al., 2010).
However, the sample size of this study is small, facing the
challenge of small sample with high dimension and insufficient
statistical significance.

A regression model based on L1 paradigm penalty constraints
(Kohannim et al., 2012; Yang et al., 2015) has been successfully
applied to multivariate genetic data analysis. However, these
methods ignore important underlying interacting relationships
between the SNPs. Based on this, Silver et al. proposed
a group sparse (Yuan and Lin, 2006; Silver et al., 2012,
2013) model to solve the image genetics problem. Further,
Wang et al. proposed a group sparse multi-task regression
model G-SMuRFS to extract feature SNP (Wang et al.,
2012), which makes full use of the group structure and is
conducive to improving regression performance. G-SMuRFS
only furnishes a point estimate of the regression coefficients;
techniques for conducting statistical inference are not provided.
Greenlaw et al. proposed a Bayesian group sparse multi-task
regression model for imaging genetics to overcome the limitation
(Greenlaw et al., 2017).

In view of the shortcomings of current image genetics
methods, this paper proposes a new solution approach from
the perspectives of prior information fusion and feature
fusion and applies it to SNPs-ROIs correlation analysis. In
this study, a three-stage framework for correlation analysis
of SNPs and brain regions was proposed. The framework
includes: in the filtering stage, hierarchical clustering
algorithm was adopted to identify the linkage unbalanced
structure between two sites, and to preliminarily eliminate
the redundant and noisy SNPs; In order to fuse the prior
information such as the distribution of SNPs on genes and
the linkage imbalance among SNPs, the group sparse model
was adopted in the feature selection stage to contain the
grouping characteristics of feature SNPs. Finally, the support
vector regression model was used to improve the regression
performance of SNP and ROI. Experimental results show that
the error of this method is lower than that of other regression
analysis methods.

EXPERIMENTAL DATA AND EVALUATION
DATA

Data Source-ADNI Database
ADNI (Alzheimer’s Disease Neuroimaging Initiative) database
(http://adni.loni.usc.edu/) is one of the most widely used
and reliable international sources of data for AD and MCI
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FIGURE 1 | A three-stage frame diagram.

experiments. ADNI integrates genetic, imaging, and clinical
data into a data platform for analysis, so as to facilitate
global researchers to further study the occurrence and
development mechanism of AD. In this paper, we use the
dataset obtained from ADNI database, which includes both
genetic and structure magnetic resonance imaging (MRI)
data and is similar to a dataset analyzed by Wang et al.
(2012). Our goal is to select feature SNPs with a high
degree of association with ROIs by association analysis
between SNPs and ROIs. Then utilizing regression models
to analyze the degree of association between feature SNPs
and ROIs. For more information about ADNI, please
visit www.adni.loni.usc.edu.

Problem Description















s11 · · · · · · s1p

s21
...

...
...

sn1 · · · · · · snp
︸ ︷︷ ︸

Xn∗p

r11 · · · r1q
...

...
...

...
rn1 · · · rnq

︸ ︷︷ ︸

Yn∗q















Min |Y − f (S)|
s.t Min|S|

(1)

where Xn∗p matrix represents the alleles on candidate SNPs, and
n represents the number of samples, p represents the number
of SNPs. Si,j ∈ {0, 1, 2}, ‘0’ denotes the wild homozygous
type, ‘1’ represents the heterozygous type, and ‘2’ represents the
mutant homozygous type. Yn∗q represents ROIs matrix, where n
represents the number of samples, q represents the number of
ROIs, and its value is a continuous real number. f (S) represents
a prediction model, where S represents the set S. Formula (1)
is the mathematical model of this problem, and the task is to
find a minimum SNPs set S to make its predicted value of ROIs
as close as possible to the real ROIs value. The dataset used in
this paper contains 632 samples, each of which has 486 SNPs
and 56 ROIs.

The Evaluation Measures
In order to objectively and comprehensively evaluate the ROIs
prediction performance of the method in this paper, this section
adopts multiple groups to evaluate, such as Formula (2)–(7),
which includingMean Absolute Error (MAE), RootMean Square
Error (RMSE), Median Absolute Error (MeAE), Mean Absolute

Percentage Error (MAPE), R2 and Root Mean Square Percentage
Error (RMSPE).

MAE =
1

n

n
∑

i = 1

|fi − yi| (2)

RMSE =

√
√
√
√

1

n

n
∑

i =1

(

fi − yi
)2

(3)

MeAE = median(fi − yi) (4)

MAPE =
100

n

n
∑

i =1

|
yi − fi

yi
| (5)

R2 = 1-

n∑

i = 1

(

yi − fi
)2

n∑

i =1

(

yi − y
)2

(6)

RMSPE =

√
√
√
√

1

n

n
∑

i =1

(
yi − fi

yi

)2

(7)

where f represents the predicted value and y represents the
actual value.

METHODS

The study of the association between millions of SNPs in the
whole genome and ROIs in the brain region is conducive to the
discovery of pathogenic genes, but the large number of SNPs and
higher order interactions between them lead to combinational
explosion. This paper proposes a new SNPs-ROIs correlation
analysis framework shown in Figure 1, which is divided into
three modules. Firstly, clustering algorithm is used to identify
potential linkage unbalanced structures to preliminary filter the
redundant noise between two sites; Then the group sparse model
was used to extract the feature sites. Finally, a regression model
was constructed to predict the phenotypic values of the brain
regions of the samples.

Hierarchical Clustering Algorithm
High-throughput sequencing technology has produced large-
scale omics data, and clustering algorithm is a common
mining algorithm, such as tumor subtype recognition, gene co-
expression module analysis, and so on (Qiu, 2020). Hierarchical
clustering is one of the most widely used classical Clustering
methods. This method usually uses tree structure to describe the
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class membership relationship among members, so its clustering
process and clustering results can be visualized through the
form of a tree. Hierarchical clustering algorithm can be divided
into two specific processes: bottom-up aggregation and top-
down splitting. The initial state of clustering in the aggregation
hierarchy is that a single sample forms a cluster separately, and
then the two clusters with the smallest distance are merged by
calculating the distances between all the class clusters, and then
the two clusters with the smallest distance are iteratively searched
for and merged until the exit condition is satisfied. The following
distance methods are commonly used for clustering: the shortest
distance method, maximum distance method, centroid distance
method, unweighted average distance, least variance method,
center of gravity method and so on. In this study, we compare the
effectiveness of the five previous distance measurement methods
in hierarchical clustering and ultimately find which method is the
most applicable. In each step of clustering, the same combination
is carried out until the expected number of classes. On the
contrary, split hierarchical clustering first initializes all objects
into a class cluster, and then divides the class cluster according
to the partition rule until the exit condition is satisfied. The exit
condition can be either a distance threshold or the number of
class clusters to be satisfied.

Feature SNP Selection Based on Group
Sparse Model
Association studies based on univariate usually assume that
SNPs are independent from each other, so they are statistically
analyzed separately with the target phenotype. But with millions
of SNPs distributed throughout the genome, association analysis
alone with the target phenotype can lead to problems such as
multiple testing problem. The feature SNP selection process can
select a feature SNP subset from millions of SNPs, which can
not only effectively express the phenotypic information of brain
ROIs, but also make the feature subset as compact as possible,
that is, contain as little redundant information as possible. The
common embedded feature selection method is to use cost
function and regularization to achieve this goal. Theoretically,
the L0 norm can be used to describe the selected number of
features intuitively, but it is usually difficult to optimize the L0
norm. Therefore, L1 norm and L2 norm are commonly used in
the actual modeling process. LASSO (Least absolute shrinkage
and selection operator) is a typical application of L1 norm. It
achieves sparse expression and feature selection by introducing
L1 regularization to construct a minimization target function
model. Ridge regression (RR) introduces L2 norm into the
objective function.

Phenotypic data of brain ROIs are continuous values, and
the most intuitive way is to describe the relationship between
SNPs and ROIs by linear regression (LR). However, RR can not
only avoid overfitting, but also promote numerical stability (de
Vlaming and Groenen, 2015; Greenlaw et al., 2017). Given the
ADNI participant {x1, · · · , xn} ⊆ ℜd and the selected imaging
phenotype

{

y1, · · · , yn
}

⊆ ℜc, n is the number of samples, d is
the number of SNPs (feature dimension), and c is the number of
ROIs (brain region phenotype). Then, the ridge regression model

is shown in equation (8).

min
w

n
∑

i = 1

∥
∥
∥WTxi − yi

∥
∥
∥

2

+ γ

d
∑

i = 1

∥
∥wi

∥
∥

2

(8)

Where W represents the weight matrix of the i-th SNP in
predicting ROIs in the j-th brain region, and γ is the weight
parameter. The larger the parameter is, the more important the
role of the regularization term in the objective function is, that
is, to improve the sparsity of the weighted model, and on the
contrary, the more emphasis is placed on the degree of fitting
between the predicted value and the actual value.

However, the ridge regression model has some shortcomings
in the actual analysis of the correlation between SNPs and
ROIs (Du et al., 2019, April): first, the weight matrix W is not
sparse, and all SNPs participate in the prediction of brain ROIs
phenotype through the weight matrix, although the weight of
some SNPs is very sparse. However, only a small number of SNPs
are actually related to target ROIs. Secondly, similar to the linear
regression model, the tasks of the ridge regression model are
decoupled, that is, each task can be learned separately. Finally, the
model ignores the group structure between SNPs. In fact, there is
not only a linkage disequilibrium (LD) between SNPs (Slatkin,
2008), but also an interaction between the genes in which SNPs
are located. LD refers to the non-random association between
different sites, and the distribution of sites with high LD is more
stable in the population. Therefore, it is necessary to consider
the grouping structure of SNPs. In addition, the human brain
is composed of multiple brain regions, which cooperate with
each other to accomplish complex functions. For example, the
function of episodic memory requires the combination of the
medial temporal lobe (MTL) structure and brain regions such as
the medial and lateral parietal lobes and the prefrontal cortex.
Therefore, the accurate prediction of subjects’ brain function
often involves the combination of multiple brain regions and
their related biomarkers.

Therefore, for the above reasons, the group structure of SNP
can not only transmit important biological information, but
also help to improve the statistical efficiency. Each SNP can be
regarded as a genetic characteristic and each ROI phenotype
as a response variable, so the regression relationship between
multiple SNPs and an ROI is a learning task, and the study on the
correlation between multiple SNPs and multiple ROIs is called
multi-task regression.Wang et al. proposed a group sparse multi-
task regression model G-SMuRFS to extract feature SNP (Wang
et al., 2012). Researchers believe that SNPs that are physically
close to each other on the same chromosome are often inherited
and related. Making full use of the group structure is conducive
to improving the regression performance and according to the
biological significance. Therefore, G-SMuRFS first divided SNPs
into k groups according to division rules

∏

= {πk}
K
k = 1, among

them
{

Wi
}mk

i = 1
∈ πk,mk is the number of SNPs in πk. Intuitively,

there are two simple grouping rules. One is to set a distance
threshold and divide SNPs less than the threshold into the nearest
or subordinate genes. The other is to use the LD criterion r2. The
larger the value is, the higher the linkage between the two SNPS
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is, and the more likely they are to be in the same group. In this
paper, the sites of r2 ≥ 0.2 were grouped.

For the sake of description, write the matrix in bold uppercase
and the vector in bold lowercase. Given a matrix M = mij,
the i-th row and j-th column are denoted as mi and mj, the
matrices of Frobenius norm an ℓ2,1 norm are defined as ‖M‖2,1 =
∑

i

√
∑

jm
2
ij =

∑

i

∥
∥mi

∥
∥
2
and ‖M‖F =

√
∑

i

∥
∥mi

∥
∥
2

2
. Therefore,

the group sparse model is expressed as equation (9).

min
W

n
∑

i = 1

∥
∥
∥WTxi − yi

∥
∥
∥

2

2
+ γ

K
∑

k = 1

√
√
√
√

∑

i∈πk

c
∑

j = 1

w2
ij (9)

In the equation:W =





W1

· · ·

WK



 ,Wk ∈ ℜmk×c(1 ≤ k ≤ K)

The matrix norm can be used to rewrite equation (9) into
equation (10).

min
W

n
∑

i = 1

∥
∥
∥WTxi − yi

∥
∥
∥

2

2
+ γ

K
∑

k = 1

∥
∥
∥Wk

∥
∥
∥

F

(10)

Because of:
X = [x1, · · · xn] ,Y =

[

y1, · · · yn
]

,

‖W‖G2.1
=

K∑

k=1

√

∑

i∈πk

c∑

j = 1
W2

ij =
K∑

k = 1

∥
∥
∥Wk

∥
∥
∥
F

we can get equation (11):

min
W

∥
∥
∥WTX − Y

∥
∥
∥

2

F
+ γ ‖W‖G2,1

(11)

Although Formula (11) considers the inter-group structure
of SNP data through the proposed G2,1 norm, the feature
selection between tasks has not been completely solved. In an
important group structure, some features may be irrelevant. On
the other hand, in less important groups, some features may be
important. Therefore, the Formula (11) model is implemented
with additional structural sparsity, and the characteristics of
multiple tasks are selected jointly through the regularization of
ℓ2,1 norm:

min
W

γ

n
∑

i = 1

∥
∥
∥WTxi − yi

∥
∥
∥

2

2
+ γ1

K
∑

k = 1

∥
∥
∥Wk

∥
∥
∥
F
+ γ2

d
∑

i = 1

∥
∥wi

∥
∥
2
(12)

The matrix form can be simply rewritten as:

min
W

n
∑

i = 1

∥
∥
∥WTX − Y

∥
∥
∥

2

F
+ γ1‖W‖G2,1

+ γ2‖W‖2,1 (13)

In Formula (13), the first item is to measure the structural error
between the return value and the real value when measuring
the SNP regression ROI phenotype. In the second item, a

set of features in the task was first identified and then all
their regression coefficients were coupled together. Because
of the genetic linkage, the item incorporated SNP grouping
information. The third item penalizes all regression coefficients
of a single feature to select features that span multiple learning
tasks. Existing algorithms usually need to reformulate sparsity
problems such as the Second-Order Cone Programming (SOCP)
or Semi-definite Programming (SDP), which can be solved by
internal point method or beam method (Wang et al., 2012).
However, solving SOCP or SDP is computationally expensive,
which limits their use in practice. Therefore, since the number
of genetic markers can be very large, an efficient algorithm such
as Formula (13) is required. Wang et al. proposed an efficient
algorithm to solve the objective function in Formula (13). In this
paper, the G-SMURFS method is used as the feature extraction
process in the three-stage analysis framework. In order to ensure
the narrative integrity, the derivation process is described in
detail below.

Take the derivative of W, set the derivative to 0, and you get
equation (14).

XXTW − XYT + γ1DW + γ2D̃W = 0 (14)

Where D is a block diagonal matrix, and the k-th block is
1

2‖Wk‖F
, Ik is the identity matrix of size m, D̃ is a diagonal

matrix, and its i-th diagonal element is 1
2‖W2‖2

, we can do the

following derivation:
Suppose a matrix:

A =






a11 . . . a1n
...

. . .
...

am1 · · · amn




 ,X =






x1
...
xn




 b =






b1
...
bn




 ,

Then:

A · X− b =







a11x1 + a12x2 + · · · + a1nxn − b1
a12x1 + a22x2 + · · · + a2nxn − b2
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

am1x1 + am2x2 + · · · + amnxn − bn







According to the paradigm definition,

‖X‖2 =
√

x12 + x22 + · · · + xn2

‖X‖2
2 = x1

2 + x2
2 + · · · + xn

2

Then
∥
∥AX − b

∥
∥
2

2
=

(

a11x1 + a12x2 + · · · + a1nxn − b1
)2
+· · ·+

(

am1x1 + am2x2 + · · · + amnxn − bn
)2

Take the partial derivative of the matrix X:

∇x

∥
∥AX − b

∥
∥
2

2
=











∇x1

∥
∥AX − b

∥
∥
2

2

∇x2

∥
∥AX − b

∥
∥
2

2
...

∇x2

∥
∥AX − b

∥
∥
2

2
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Among them:

∇x1

∥
∥AX − b

∥
∥
2

2
= 2

(

a11x1 + a12x2 + · · · + a1nxn − b
)

a11+

2
(

a21x1 + a22x2 + · · · + a2nxn − b
)

a21 + · · ·

+2
(

am1x1 + am2x2 + · · · + amnxn − b
)

am1

Formulas such as ∇xn

∥
∥AX − b

∥
∥
2

2
can also be analogized in turn.

It can be found that:

∇x

∥
∥AX − b

∥
∥
2

2
= 2







a11 a21 · · · am1

a12 a22 · · · am2

· · · · · · · · · · · · · · ·

a1n a2n · · · amn






·







a11x1 + a12x2 + · · · + a1nxn − b
a21x1 + a22x2 + · · · + a2nxn − b2
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

am1x1 + am2x2 + · · · + amnxn − bn







= 2AT
(

AX − b
)

According to the property: matrix transpose does not change the

value of the norm, ‖A− B‖2
2 =

∥
∥(A− B)T

∥
∥
2

2

Then
∥
∥WTX − Y

∥
∥
2

2
=

∥
∥XTW − YT

∥
∥
2

2
, we can know from

Formula (15):

∥
∥WTX − Y

∥
∥
2

2
=

∥
∥XTW − YT

∥
∥
2

2

= 2X(XTW − YT) = 2X · XT ·W − 2X · YT
(15)

Next, the derivative of r1
k∑

k=1

∥
∥
∥Wk

∥
∥
∥

F

with respect to W, when

k = 1, assuming that this group hasmk total of SNPs, then:

∥
∥
∥W

′
∥
∥
∥
F
=

√

Widx1−1
2 + · · ·+Widx1−n

2 + · · · +Widxs−1
2 +Widxs−2

2 +Widxs−n
2

Where idx1 · · · idxs represents the index number of the SNP in
the group,

W =







w11w12 · · ·w1n

w21w22 · · ·w2n

· · · · · · · · · · · · · · ·

w1wm2 · · ·wmn






represents the weight coefficient of

m SNPs on Y1Y2 · · ·Yn.
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∥
∥
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∥
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∥
∥
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∥
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∥
∥
∥
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∥
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For ∇w11

k∑

k=1

∥
∥
∥Wk

∥
∥
∥
F
, suppose that the first SNP is in group S,

then in the previous formula, only
∥
∥
∥Wks

∥
∥
∥
F
contains the weight

coefficient of the SNP and Y .
Take the partial derivative with respect to w11:

∇w11

k
∑

k=1

∥
∥
∥Wk

∥
∥
∥
F
= ∇w11

∥
∥Ws

∥
∥
F
=

1

2‖Ws‖F
� 2w11

The partial derivatives of the other terms can be derived and so
on. We can find the derivative result:

∇W(
k∑

k=1

∥
∥
∥Wk

∥
∥
∥
F
)
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1
2‖Ws1‖F

· 2w11
1
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1
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1

2‖Ws2‖F
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1
2‖Ws2‖F

· 2w22 · · ·
1
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· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1

2‖Wsk‖F
· 2wm1

1
2‖Wsk‖F

· 2wm2 · · ·
1

2‖Wsk‖F
· 2wmn








Where s1 · · · sk represents that the SNP belongs to group

sk, and
∥
∥
∥Wks

∥
∥
∥
F
represents the regular term of the group in which

the SNP belongs.
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∥
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∥
∥
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· 2

= D ·W · 2

Let’s take the derivative of r2
d∑

i=1

∥
∥Wi

∥
∥
2
with respect toW : where

∥
∥wi

∥
∥
2
=

√
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2
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∥
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∥
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∥
∥
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∥
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∥
∥
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∥
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∥
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For one of these terms, ∇w11

∥
∥W1

∥
∥
2
= 1

2‖W1‖2
� 2w11, the other

terms can be analogous.
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∥
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∥
∥
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(16)
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Equation (16) can be written as:

∇W (
d∑

i=1

∥
∥Wi

∥
∥
2

=










1
2‖W1‖2

1
2‖W2‖2

. . .
1

2‖Wm‖2










·







w11w12 · · ·w1n

w21w22 · · ·w2n

· · · · · · · · · · · · · · ·

wm1wm2 · · ·wmn






· 2

= D̃ ·W · 2

Then, equation (14) can be obtained as equation (17).

W =

(

XXT + γ1D+ γ2D̃
)−1

XYT (17)

Therefore, W can be obtained effectively by solving linear
equation

(

XXT + γ1D+ γ2D̃
)

W = XYT , which improves the
efficiency of solving group sparse model.

In this study, the above group sparse model is used as
the feature selection in the three-stage framework. After the
implementation of this stage, each SNP has a weight vector
corresponding to each ROI, and the importance of SNP can be
judged according to the weight in the feature vector, and then the
feature SNP can be selected.

Support Vector Regression
In this paper, the three-stage analysis framework uses the support
vector regression model to predict the phenotype value of ROI.
Here, the support vector regression model is briefly introduced.
Support vector machine (SVM) can be used to solve problems
such as classification and regression. The response variable of
classification problem is discrete tag value, while the response
variable value of regression problem is usually continuous.
Support vector regression (SVR) is an extension of SVM on
regression tasks (Huang et al., 2018). Support vector regression
can be roughly divided into linear support vector regression and
non-linear support vector regression.

For the linear support vector regression problem, given the
training set:

D =
{

(x1, x2) , · · ·
(

xi, yi
)}

, x ∈ Rn, y ∈ R

construct a linear function f (x) = 〈w · x〉 + b to fit
D, as far as possible to make the precision ε as flat as

possible, which is equivalent to minimizing 1
2‖w‖

2, on the
other hand, the reconstruction error is required to be as small
as possible. Therefore, it is transformed into the problem of
solving constraint optimization. The fitting function can be
obtained by using Lagrange theorem quadratic programming
and duality principle:

f (x) =

l
∑

i=1

(α∗
i − ai)(xi · x)+ b (18)

For the non-linear regression problem, the solution is to
transform the non-linear problem in the low dimensional space
into the linear regression problem in the high dimensional
space. The solution of the non-linear regression function (19)
is expressed by the support vector, so the support vector can be
regarded as the expansion of the kernel function.

f (x) =

l
∑

i=1

(

α∗
i − αi

)

K (xi · x) + b (19)

The kernel function is needed to map the non-linear function
in low dimensional space to the linear function in high
dimensional space. The kernel function is to compute the vector
first in a low dimensional space and then compute the inner
product of the vector in a higher dimensional space. It can
be seen that the selection of appropriate kernel function is the
key element of SVR, and common kernel functions include
polynomial kernel, neural network kernel and gaussian radial
basis function kernel. The regression prediction stage of the
three-stage analysis framework in this paper adopts the SVR
model, which receives the characteristic SNPs output in the
feature selection stage, and then trains the SVR model on the
data set, so as to realize the regression prediction of SNP
and ROI.

EXPERIMENTAL RESULTS

Clustering Results
Clustering algorithm parameters usually affect clustering
results, such as clustering number, distance formula,
etc. In this paper, different clustering parameters are
compared and analyzed, and then appropriate parameters
are selected to obtain more stable clustering results.

TABLE 1 | Cluster distance parameter setting.

The shortest

distance method

Maximum distance

method

Centroid distance

method

Unweighted mean

distance

Least variance

method

Euclidean distance 0.7134 0.5346 0.5938 0.5196 0.4917

Absolute distance 0.7096 0.5255 0.4448 0.6124 0.4921

Minkowski distance 0.8545 0.7685 0.7973 0.8025 0.7288

Variance weighted distance 0.7118 0.5410 0.5595 0.6479 0.5403
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FIGURE 2 | The comparison results on MAE.

FIGURE 3 | The comparison results on RMSE.

Under different hierarchical clustering methods, the
composite correlation coefficient between hierarchical
clustering tree and distance vector is calculated as shown
in Table 1.

When the composite correlation coefficient is closer to 1, the
clustering is more ideal. It can be seen that when the distance

calculation method adopts the Minkowski distance (parameter
r is tested and 0.23 is the best) and the shortest distance
method is adopted for the hierarchical clustering method, the
correlation coefficient can reach 0.8545, which is the closest
to 1, that is, the clustering effect is the most ideal under
this method.
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FIGURE 4 | The comparison results on MeAE.

Comparison of Regression Analysis
Results of Different Evaluation Indexes
The following methods were compared: the three-stage analysis
framework proposed in this paper and ridge regression,
multivariate regression, sparse model MTFL and group sparse
method G-SMuRFS. The results are shown in Figure 2, where
’three-stage (gene)’ represents the prior information of gene
in the sparse group model. The SNPs located in the same
gene are divided into one group, while ’three-stage’ means
that different groups are classified by Hierarchical clustering.
As we can see from Figure 3, the previous four are the
methods proposed by previous researchers, and the last two
are the three-stage analysis framework that we proposed,
SNPs were grouped by genetic and hierarchical clustering
separately. On FreeSurfer imaging phenotypes testing, the last
two we proposed three-stage analysis framework outperforms the
previous four approaches both in terms of prediction accuracy
and robustness.

MeAE evaluation index can usually be used to eliminate the
interference of outliers, and the results are shown in Figure 4.

R2 is the ratio of the sum of the squares of the regression
to the total sum of the squares in the multivariate regression.
It is a statistic to measure the degree of fitting and reflects the
proportion explained by the regression equation estimated in the
variation of the dependent variable y. The closer R2 is to 1, the
greater the proportion of the regression sum of squares in the
total sum of squares, and the closer the regression line is to the
observation points, the better the regression fitting degree will be.
The results are shown in Figure 6.

Comparing the experimental results of Figures 2–7, it is
found that the regression error of the three-stage analysis

framework proposed in this paper is significantly smaller than
that of other methods under different indexes. Note that the
regression error of other methods changes greatly with the
change of the number of SNPs, and the error becomes larger
even when the number of SNPs increases. However, it can be
found that the regression results of our method are relatively
stable, which is reflected in that the error value does not
change with the increase of the number of SNPs selected,
which indirectly indicates that the group sparse model can
steadily select the most representative SNP from all the candidate
SNPS. In addition, SVR may also contribute the stability of
our method.

For the multi-regression task, the same SNPs subset may
have different significance for different ROIs, so the prediction
accuracy of each ROI may be different. Next, the prediction
performance is compared and analyzed from a single ROI.

Comparative Analysis of Single ROI Value
Brain region location, structure, size and metabolic level
corresponding to different ROIs have different effects on the
judgment of Alzheimer’s disease, and different ROIs may be
influenced by different functional genes. Therefore, the next step
is to further demonstrate the regression performance of different
methods on different ROIs, as shown in Figure 8.

The results in the figure show that some ROIs are highly
correlated with selected SNP characteristics and can be predicted
well-under most regression methods. However, some ROI
regions are not highly correlated with the selected SNP
characteristics, resulting in large differences in the accuracy
of their predictions. The experimental results show that the
proposed analytical framework is superior to other methods.

Frontiers in Genetics | www.frontiersin.org 9 September 2020 | Volume 11 | Article 572350

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhou et al. Association Between SNPs and ROIs

FIGURE 5 | The comparison results on MAPE.

FIGURE 6 | The comparison results on R2.

CONCLUSION

So far, some risk genes that are significantly associated

with AD have been excavated from the genomic level, but
this may still be only the tip of the iceberg behind their

complex genetic mechanisms. This paper proposes a framework
of SNPs associated with ROI analysis of three phase, the

framework uses clustering algorithm to remove two loci
potential linkage disequilibrium structure, and then use the
priori information such as gene group sparse model structure,
linkage disequilibrium structure selected characteristics of SNP,
finally use regression model to analyze the connection degree

of characteristics between SNPs and ROI. From the perspective
of multiple measures, our method has certain advantages in
identifying ROI-related characteristic SNP sites, which means
that mutations in these sites may lead to changes in relevant
functional genes, thus affecting the function of brain regions.

The proposed three-stage analysis framework was compared
with ridge regression, multivariate regression, sparse model
MTFL and group sparse method G-SMuRFS under different
indexes. It can be seen that the regression error of the three-
stage analysis framework proposed in this paper is significantly
smaller than that of other methods, and the results of this method
are relatively stable, which indirectly indicates that the group
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FIGURE 7 | The comparison results on RMSPE.

FIGURE 8 | The comparison results on single ROI.

sparse model can stably select the most representative SNP as
the features from the candidate SNPs. For the multi-regression
task, the importance of the same SNP subset to different ROIs is
different. The correlation analysis between a single ROI and the
selected SNP characteristics is conducted by different methods.
The experimental results show that the analysis framework
proposed in this paper has some advantages over other methods
in general.

The occurrence and development of AD are related to the
interaction of multiple biomolecules. If only one level of omics
data is studied, it will deviate from the real disease model

and ignore the real and complete risk factors, resulting in the
lack of heritability. Therefore, the further work will be: (1) the
multi-mode brain image data contains more information, and
the data of different modes have complementary information.
The establishment of multi-mode brain image data fusion
analysis model is conducive to the accurate identification of
early AD patients; (2) on the basis of in-depth mining of
AD genome-wide SNP data, the integration of other levels
of omics data is conducive to a systematic and complete
understanding of the occurrence and development process
of AD.
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